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L. S. Vygotsky in his famous methodological essay “The historical meaning of psycho-
logical crisis” (1928) emphasized the importance of studying any psychological process 
or state as a “whole” — that is, as characterized from the subjective and objective sides 
at the same time. This position is fully relevant for studying the human functional states 
(FSes). Today the objective psychophysiological diagnostics of human FSes in activities 
associated with a high risk of technological disasters (in nuclear-power plants, transpor-
tation, the chemical industry) are extremely relevant and socially important. This article 
reviews some new psychophysiological methods of FS assessment that are being devel-
oped in Russia and abroad and discusses different aspects of developing integral psy-
chophysiological FS assessment. The emphasis is on distant methods of FS diagnostics: 
the bioradiolocation method, laser Doppler vibrometry, eye tracking, audio and video 
recordings, infrared thermography. The possibilities and limitations of the most popular 
emotion atlases — the Facial Affect Scoring Technique (FAST) and the Facial Action 
Coding System (FACS) — in developing distant visual-range and infrared-range systems 
for automated classification of facial expressions are analyzed. A special section of the 
article concentrates on the problem of constructing an integral psychophysiological FS 
index. Mathematical algorithms that provide a partition of FS indicators into different 
FS types are based on various methods of machine learning. We propose the vector ap-
proach for construction of complex estimations of the human FSes.
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introduction
In general, functional state (FS) is defined as a state of the mental and physiological 
activity of a person against which one or another professional activity is imple-
mented (Danilova, 1992; Leonova, 2007, 2009; Leonova & Kuznetsova, 2015). In 
physiology, FS is closely associated with the level of activation (excitation/inhibi-
tion) of the nerve centers. In accordance with this interpretation, FSes are consid-
ered “functional states of the brain” and are presented as values on a “sleep-wake” 
scale (Danilova, 1992). Psychologists added psychological factors to physiological 
FS determinants: for example, motivation, activity content, individual characteris-
tics of mental processes and states (Leonova, 2007, 2009; Leonova & Kuznetsova, 
2015). As a result the set of physiological FSes (sleep, wakefulness, fatigue, mo-
notony, slumber) was completed with such psychophysiological FSes (“psychoe-
motional states”) as emotions, psychological stress, altered-consciousness states, 
anxiety, fears, depression.

The problem of objective (psychophysiological) human FS diagnostics in dif-
ferent modes of behavior associated with the high risk of technological disasters (in 
nuclear-power plants, transportation, the chemical industry) is extremely relevant 
and socially important. A critical factor in determining the efficiency of an activity 
is the “optimal (for this activity) human FS”. Deviation from this factor leads to se-
rious failures (Chernobyl, Fukushima-1). The European Union spends tens of mil-
lions of euros for development of this urgent topic (for example, the international 
project “Advanced sensor development for attention, stress, vigilance, and sleep/
wakefulness monitoring”). Starting in 2004 within NATO scientific and technolog-
ical programs Operator Functional State Assessments have been performed. Ap-
plied studies related to the development of objective and distant FS identification 
methods in real-time mode are of particular interest. In the struggle against terror-
ism the development of optical-electronic equipment and software for identifying 
FSes based on individual behavioral characteristics and appearance turns out to be 
a task for fundamental and applied psychophysiology.

Bioradiolocation of fs indicators 
Bioradiolocation is held to create new distant methods for human FS identification 
on the basis of such physiological parameters as heart rate and breathing, which are 
usually controlled by contact sensors. Four groups of biomechanical movements 
generate the signals recorded by radar methods: (1) contraction of heart muscle 
(of 0.8–2.5 Hz, thorax oscillation amplitude is 0.1 mm); (2) vibrations of thorax 
during breathing (0.2–0.5 Hz, oscillation amplitude is 0.5–1.5 cm); (3) the move-
ment of organs of speech (the basic tone oscillation frequency of vocal cords equals 
about 100 Hz), and (4) movements of head, lips, hands, and feet (Bugaev, Ivashev, 
& Immoreev, 2010). Ultra-wideband (UWB) radar) for remote measuring of car-
diac activity and respiration has been developed and tested (Immoreev, Isaychev, 
Samkov, & Pavlov, 2010). Radar belongs to the class of ultra-wideband when the 
impulse length in space (impulse duration × speed of light) becomes comparable 
to or less than the spatial extent of the observed object. UWB radar significantly 
increases resolution and the accuracy of the measurement of the distance to the 
monitoring object, decreases the radar “dead zone”, increases resistance to all types 
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of passive interference, and simplifies monitoring of a moving target against strong 
reflections from stationary objects in the background. To evaluate the accuracy 
of the measurements obtained by using UWB radar and the quality of playback 
information about cardiac activity, a special study comparing the signals captured 
by UWB radar with the signals of an electrocardiograph was carried out (Immo-
reev et al., 2010). Value distributions of instantaneous (from beat to beat) changes 
in the period of cardiac contractions were compared. The correlation coefficient 
between these two measurement methods was ~ 0.91, and the average measure-
ment error was less than 3%. Results of these experiments confirm the possibility 
of using UWB radar for monitoring human cardiac activity and respiration rate. 
Such properties of UWB radar as noncontact, remoteness of measurements, device 
portability, easy maintenance and handling make this method promising and reli-
able for use in systems for remote FS diagnostics.

laser Doppler vibrometry 
Laser vibrometry is designed for remote measurement of vibration velocity (vi-
brooscillations) of the test object or a part of it in the range from 0.01 to 50 mm/s 
on frequencies of vibration from 80 Hz to 11 kHz. The working distance for the 
measurements between the laser vibrometer and the object ranges from 1.5 to 10 
m and more. The first domestic portable laser vibrometer with increased sensitiv-
ity was developed by JSC FSPC NSRP “Quartz” (http://www.kvarz.com/general/
aboutR.html). The working principle of the laser vibrometer is the Doppler shift of 
radiation of optical (laser) frequency reflected from a moving object. In fact, laser 
Doppler vibrometry (LDV) is close to widely used methods in human psychophys-
iological studies such as accelerometry and plethysmography, which in contact ap-
plication convert signals about changes in skin state to information about the state 
of the physiological processes that caused these changes. Use of LDV allows one to 
register a greater number of physiological parameters than does radar. In particu-
lar, by using LDV it is possible to measure muscle tension, heart rate, heart tones, 
and various respiratory parameters. With LDV it is possible to register muscle ten-
sion in the form of an “acoustic myogram”, which correlates well with regular EMG 
and can be used to determine patterns of the activity of facial mimic muscles cor-
responding to the expression of different emotions. It is important to note that LDV 
signals are weakly influenced by various noises and other external conditions.

oculomotor activity and pupillary response 
Methods for eye-movement detection have been effectively used in experimental 
psychology for over half a century. Eye-tracking units operate on the principle of 
videooculography, the essence of which is video registration of pupil shifts and 
glints arising on the cornea because of infrared radiation directed into the eye. 
Glint, formed on the cornea, is recognized by video camera as a bright spot, and the 
pupil is detected as a black one. Moreover, the position of an infrared backlight is 
analyzed, and thus it becomes possible to determine the orientation of the eyeball 
optical axis. The main task of eye tracking is the real-time (with a frequency of 250 
Hz) registration and transfer of data about eye movements. Eight types of human 
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eye movements are known; of these fixations and saccades are of the greatest inter-
est to psychophysiologists. Eye fixations are the complex of micromovements in a 
small spatial area consisting of microsaccades (fast jumps with angular speed up to 
200 °/s), drift (slow movements with speed below 0.5 °/s), and tremor (quick eye-
ball trembling at a rate of 30-80 c/s) (Barabanschikov & Milad, 1994; Barlow, 1952). 
Fixation (as a certain part of the drift) is the drift — that is, the slow and smooth 
eye movement — in a small spatial area (Barabanschikov & Milad, 1994). It is con-
sidered that during fixation receipt the processing of visual information occurs. 
Saccades are sudden eye leaps that change the eye position and, as a consequence, 
change the location of the focus of visual attention (“the zone of clear vision”). Ocu-
lomotor activity is determined by the current task, and study of its dynamics opens 
up the possibility for the objective study of cognitive-perception processes (image 
construction). Initially, the main task of eye tracking was to study the psychologi-
cal patterns of visual perception (Klingner, Kumar, & Hanrahan, 2008). Numer-
ous studies have shown that eye movements are critically related to many aspects 
of visual perception (Wade & Tatler, 2005; Yarbus, 1967), attention (Hoffman & 
Subramaniam, 1995), and different types of psychological disorders (Kovalev, Kli-
mova, & Menshikova, 2016; Menshikova, Kovalev, Klimova, & Chernorizov, 2015; 
Shapiro, 1989). 

The reflex reaction of the constriction/extension of pupil diameter (RPD) can 
be used as one of the indicators of distantly registered electrooculography for FS 
diagnostics. Anatomically and functionally the RPD is under the control of an-
tagonistic effects of sympathetic and parasympathetic autonomic-nervous-system 
divisions. The RPD is affected by a number of factors related to the influence of ex-
ternal stimulation (light, contrast, duration) as well as to individual characteristics 
of the response subject (emotionality, cognitive processes, fatigue) (Fukuda, Stern, 
Brown, & Russo, 2005). According to some researchers, RPD can also be effectively 
used for stress diagnostics in lie detection (Heaver & Hutton, 2011). Currently a 
method of complex FS diagnostics based on a combination of eye tracking with 
EEG-analysis data is being developed.

Diagnostics of psychoemotional states according  
to facial expression
 Facial expressions are an important source of information about human emotions, 
intentions, and affective states. In this regard, their analysis is increasingly being 
used in brain-computer interfaces along with analysis of audio signals and body 
movement (postures, gestures) (Ekman, 1999).

Emotion atlases FAST and FACS 
Based on studies of the expression and perception of human emotions carried out 
using the method of visual analysis (classification) and the method of registration 
and analysis of mimic-muscle activity, P. Ekman and colleagues developed two 
human “atlases of emotions” —  the Facial Affect Scoring Technique (FAST) and 
the Facial Action Coding System (FACS) (Ekman, Friesen, & Hager, 2002; Ekman, 
Friesen, & Tomkins, 1971). In the FAST atlas sketches of emotional expressions for 
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three levels of the face (eyebrows and forehead, eyes and lids, lower part of face) 
were presented for different gaze directions and head orientations. The FACS atlas 
is a complete description of the activity patterns of certain facial muscles, made 
on the basis of individual facial muscles’ registration of electrical activity during 
the expression of different emotions. In the FACS atlas nearly 10,000 patterns of 
facial muscle activity are presented, and the relation of these patterns to different 
emotional expressions is established (Ekman et al., 2002). Thus, according to the 
FACS atlas, muscular correlates of the sign and the intensity of expressed (experi-
enced) emotion are a specific combination (pattern) of the activity of facial muscles 
and the magnitude of this activity, respectively. FAST and FACS atlases are widely 
used for studying emotions in fundamental psychology, for training profilers in ap-
plied psychology (Turvey, 2012), and for developing systems for automated facial-
expression classification and automated affect recognition in artificial-intelligence 
programs (as described in the following two sections).

Visible-range systems for automated facial-expression classification (AFEC) 
and systems for automated affect recognition (AAR)
Technical intelligence systems with elements of automated facial-expression classi-
fication (AFEC) and automated affect recognition (AAR) can be effectively applied 
not only in artificial intelligence but also in modern detectors of hidden knowledge 
based on analysis of thermal signals from facial muscles (Pavlidis, 2004). In the 
field of recognition of faces and emotional facial expressions there are two main 
approaches: visual and thermal. The visual approach analyzes the usual video se-
quence; the thermal approach analyzes video obtained from thermal imaging cam-
eras that are able to capture infrared radiation from the human face.

Most modern AFEC devices are based on the analysis of video data (visual-
based AFEC, vAFEC) (Abidi, Huq, & Abidi, 2004). The reliability of these systems 
in emotion recognition based on visual face images reaches 70%. The theoretical 
basis for such systems and the mathematical algorithms and technical components 
used to create them are described in reviews by Pantic and Rothkrantz (2000). De-
spite their relatively high accuracy in emotion recognition in laboratory conditions, 
AFEC systems of this type are inefficient in field conditions for the following rea-
sons (Fasel & Luettin, 2003): the impact of changes in the intensity of background 
light, the dependence of the accuracy of identification on pose, and the accuracy 
of the face-structure model used in the algorithm for emotion recognition. The 
limitations of visually oriented AFEC and AAR systems in real conditions were 
also not removed when they were used as a reference database for recognition of 
faces from the FACS atlas. All these difficulties are triggers for the development of 
AFEC systems based on other types of (nonvisual) information (nonvisual-based 
AFEC, nvAFEC) or based on a combination of visual and nonvisual signals (for 
example, thermovision and/or acoustic signals) (Christie & Friedman, 2004). In 
most vAFEC visual evaluation of facial muscles, movement is used. All types of 
observed movements of facial muscles are usually divided into four groups: stat-
ic (tonic) signals, reflecting the stable properties of the activity of facial muscles; 
gradual (slow) changes in muscle activity that contribute to overall facial expres-
sion; artificial signals (artifacts) associated with the peculiarities of hair covering, 
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glasses, and jewelry; fast signals, reflecting changes in neuromuscular facial activity 
(clenching of jaws, opening of mouth). In the FACS atlas fast signals are the basis 
for encoding emotions.

In addition to the FACS atlas two other methods are used in systems of emotion 
recognition based on facial expressions: оptical flow analysis and the 3D wireframe 
face model. Optical flow analysis (OFA) is based on measurement of local changes 
in “face-image” brightness arising from the activity of facial muscles (De Carlo & 
Metaxas, 2000). The accuracy of this method for classification of emotions varies in 
rigidly controlled test conditions from 80% to 98%. The 3D wireframe face model 
is more accurate than the OFA method but requires large calculations (Gur et al., 
2002).

Common drawbacks of visual methods for detecting facial expression are low 
efficiency in conditions of weak and/or uneven illumination and the dependence of 
expression-identification reliability of the same person on shooting angle.

Infrared-range systems for automated facial-expression classification  
(AFEC) and systems for automated affect recognition (AAR)
Infrared thermography is a method of remote visualization and registration of ob-
ject thermal fields within the range of electromagnetic waves of infrared radiation 
from 770 nm to 1000 microns. Thermography is a powerful research tool used in 
almost all fields of natural science — medicine, geology, biology, energy saving, 
nondestructive testing (Vavilov, 2013). Increased interest in thermography is con-
nected with the appearance of a new generation of thermal imagers and modern 
methods of digital processing, analysis, and storage of thermographic images.

One of the most important applications of thermography is noncontact reg-
istration of psychophysiological parameters through systems of distant detection 
and identification of human appearance and behavior features in situations of anxi-
ety, increased emotional excitement, and stress. Human skin has high emissivity, 
close to absolute blackbody. Therefore, a change in its temperature leads to a sig-
nificant change in the power of emitted infrared radiation. Low reflectance of skin 
minimizes the environmental influence on the detection of skin temperature. In 
thermographic imaging low reflectance allows accurate capturing of local tempera-
ture changes.

Cardone, Pinti, and Merla (2015) review the main achievements of thermog-
raphy in human FS monitoring. They also provide strong evidence of the ability to 
use infrared images as the basis for a quantitative estimate of such autonomic-ner-
vous-system activity parameters as local blood perfusion, heart rate, and respira-
tory rate. Pavlidis & Levine (2001) show that the level of perfusion in the eye-socket 
region allows the registration of small temperature changes associated with human 
FS. Puri, Olson, Pavlidis, Levine, and Starren (2005) discovered that the rectan-
gular forehead area containing central vessels is the most informative for stress 
diagnostics. A number of studies suggest that one of the most informative methods 
for human FS evaluation is remote thermographic analysis of breathing flows. For 
example, Lewis, Gatto, and Porges (2011) provide experimental data showing that 
infrared thermography allows sufficiently accurate evaluation of breathing rhythm 
and relative tidal volume.
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Study of facial thermal radiation by infrared cameras (thermal imagers) to de-
velop infrared-range AFEC and AAR is a new and actively developing area at the 
intersection of fundamental science and practice (Jarlier et al., 2011; Kong, Heo, 
Abidi, Paik, & Abidi, 2005). This method is the most promising and rapidly devel-
oping technique for the distant detection of emotions. Temperature mapping has a 
high temporal resolution and allows identification of face features and expressions 
in low-light conditions. Generally, a thermovisor is used in combination with a 
regular video camera. The facial image in the visible range has more pronounced 
details that allow more accurate determination of interesting facial areas on the 
image; it compensates for possible distortions, such as head rotation and mimic 
distortions, and allows more accurate estimation of the distortion parameters. Such 
imaging requires the performance of two tasks: (1) searching for a face in the image 
according to basic contours and points (eyes, nose); (2) describing face parameters 
(eye contours, eyelids, eyebrows, lips, nose wings) in detail. Special biometric soft-
ware has been developed to perform these tasks. Detailed evaluation of face rota-
tion and detection of biometric (mimic) control points on the face are done using 
Active Appearance Models (AAM) (Leinhart & Maydt, 2002) and Active Shape 
Models (ASM) (Cristinacce & Cootes, 2007). Combining data from AAM/ASM 
models with a thermal image allows more accurate determination of the location of 
the desired temperature control points on the thermal image (Wang, He, Wu, He, 
& Ji, 2014). These methods also allow evaluation of human facial expressions, and 
the information can be used to assess emotional states (Huang & Ren, 2013). Use 
of these methods on a video sequence allows one to track control-point trajectories 
in space and to evaluate dynamic characteristics of facial expressions.

In experiments on rats (Vianna & Carrive, 2005), monkeys (Nakayama, Goto, 
Kuraoka, & Nakamura, 2005), and humans (Puri et al., 2005) the possibility of us-
ing facial thermal mapping for emotion and stress diagnostics has been demon-
strated.

Avinash, Buddharaju, Pienta, & Pavlidis (2012) compared the effectiveness of 
methods for recognizing facial features and expressions using data from infrared 
video, ordinary video, or both on the basis of the FACS atlas recognition system. 
The comparison was based on an analysis of 13 facial regions of interest (ROIs) that 
are critically important for the recognition of basic emotions (Ekman et al., 2002). 
For each ROI the average value of the parameters was extracted, and then princi-
pal-component analysis was used to identify the degree of deviation of each of the 
13 regions from neutral facial expression. It turned out that under different levels of 
illumination but constant temperature the thermal method was better than the vi-
sual method, as was expected. Under conditions of constant illumination and vari-
able temperature (a fan with heated air of varying intensity was directed on the face 
of the subject) the visual method showed greater efficacy, whereas the performance 
of the thermal method, contrary to expectations, remained virtually unchanged. 
The authors note that if we consider the visual and the thermal methods separately, 
not in combination, temperature mapping is preferable. However, for the most ef-
fective identification of facial features and emotional expressions the combination 
of thermal and visual methods is optimal (Avinash et al., 2012).
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A modern cross-cultural research challenge for the universality of emotional 
communication: Does culture shape how we look at faces?
Fundamental cross-cultural studies of emotional expression among representatives 
of more than 20 countries of East and West showed that facial expressions of basic 
emotions do not depend on culture and are universal for humans (Ekman, 1999). 
Studies of facial emotional expressions among chimpanzees have confirmed the 
ideas of Charles Darwin and P. Ekman about the evolution of emotional commu-
nication in primates and served as the basis for the creation of the Chimpanzee 
Facial Action Coding System (ChimpFACS) (Parr, Waller, Vick, & Bard, 2007). The 
ChimpFACS is an objective, standardized observational tool for measuring for fa-
cial movements in chimpanzees based on FACS (Ekman et al., 2002). This tool 
enables direct structural comparisons of facial expressions between humans and 
chimpanzees based on their common underlying musculature. The authors pro-
vided data on the application of the ChimpFACS to validate existing categories of 
chimpanzee facial expressions using discriminant-functions analyses. As a result, 
the authors suggested a potential homology between these prototypical chimpan-
zee expressions and human expressions based on musculature. 

However, works have now appeared the results of which indicate cross-cultural 
differences in ways of expression and the perception of emotions (Engelmann & 
Pogosyan, 2013; Park, Barash, Fink, & Cha, 2013). Such cultural distinctions may 
lead to missed cues or misinterpreted signals about emotions during cross-cultural 
communications. These data challenge the common theory that facial expressions 
are a hard-wired human behavior with solely evolutionary origins and therefore 
facial expressions do not differ across cultures. These data on the cultural influence 
on expression and perception are not doubted. The only question debated is how 
these influences apply to the so-called basic emotions (Ekman, 1999). The answer 
to this question is important for understanding whether (and how) to consider 
the impact of cultural differences on emotional communication in emotion atlases 
(FAST, FACS) and systems of automated emotion recognition (AFEC, AAR).

Diagnostics of human psychoemotional states using speech analysis
A number of psychophysiological data show that each human emotion has its 
specific sound expression, which is manifested in the change of so-called vocal 
utterance — tone, rhythm (tempo), and timbre (Potapova, Potapov, Lebedeva, & 
Agibalova, 2015). Psychologists and psycholinguists suppose that about 90% of 
emotional communication occurs on the nonverbal level. For example, although 
speech is perceived regardless of its content, we can discover the emotional state 
of the person (for example, melancholy or anxiety) based on such indicators as the 
rate and average duration of pure speech, the length of pauses, the ratio of pause 
time to total time of utterance, the speed of articulation, hesitations, the character 
of respiratory movements, voice pulsation related to blood flow, changes in the 
main tone of voice, and the analysis of vibrations of the vocal-apparatus muscles 
(Bachrowski & Owren, 2003; Lebedeva & Karimova, 2014; Potapova et al., 2015). 
The restriction of voice analyzers of emotions is a requirement for well manifest-
ed (clearly, loudly) verbal expressions; this requirement limits application of this 
method in field conditions.
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hardware-software complexes for distant registration of fs parameters
 Currently, the market for commercial services for distant FS diagnostics presents 
a limited number of choices. The most famous is a product of Siemens VDO, the 
Driver Attention System (DAS). Based on a driver’s facial expression and eye move-
ments, a DAS camera placed on the dashboard monitors FSes (on the scale sleep-
wake) during car movement and, in case of deviations from the norm, it beeps 
to the driver (http://techfreep.com/automatically-adjust-to-speed-limits-with-sie-
mens-car-camera.htm). 

In Russia, scientific and applied research and development of systems similar 
to DAS are only beginning. One of them, VibraMed, is a system for the analysis 
of human psychophysiological and emotional states ; it was developed by Elsis (in 
St. Petersburg, Russia) (Minkin, 2007). The system is based on the registration of 
the frequency and amplitude of human head micromovements (“vibroimages of 
human head”). Vibroimaging registers micromovement and spatial oscillations 
of the object by determining the vibration parameters (frequency and amplitude) 
for each element (pixel) of the test image. The theoretical basis of the method 
is that the vestibular system is linked to all other functional systems of the hu-
man body and responds promptly to any mechanical, level-of-pain, or emotional 
change. According to the author, head-vibration parameters (frequency range 
0.1–10.0 Hz and amplitude in the range of 10–1000 µm) for the steady emotional 
state of a person are stable over time. Vibration parameters fluctuate only after a 
change in emotional state. At this time the link of emotions to head micromove-
ments cannot be considered to be sufficiently studied and unambiguous. For ex-
ample, the VibraMed program promises quantitative evaluation of such human 
qualities as health, extraversion, and anxiety. However, these characteristics are 
intrinsically integral and reflect the complex interaction of multiple physiological 
and psychological processes that cannot be tested using only one physiological 
index. 

Developments in the integral psychophysiological evaluation of fses: 
challenges, approaches
Existing contact and distant FS monitoring technologies face the following major 
problems: (1) the difficulty of taking individual differences into account; (2) the 
variability of psychophysiological characteristics corresponding to one FS type, 
which lies within its “corridor” around an unknown centroid corresponding to the 
characteristics typical for it; (3) developing and adjusting reliable mathematical da-
ta-processing algorithms for providing accurate classification of FSes in real time; 
(4) the forecasting and predicting FS changes in the release of psychophysiological 
characteristics beyond the limits acceptable for the given type of FS.

In order to solve these problems we propose a vector approach based on the 
presentation of multiple psychophysiological characteristics (FS indicators) as 
a vector, the n dimension of which is determined by a number of psychological 
(tests) and physiological (heart rate, galvanic skin response, EEG) indicators 
(Lebedev, Isaychev, Chernorizov, & Zinchenko, 2013). Vector elements can be 
both standard “first-level” characteristics and characteristics obtained from less 
standard signal processing (for example, coefficients of EEG signal decompo-
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sition). A set of such vectors forms the n-dimensional space of FS indicators, 
where each FS type has its own spatial area formed by a set of vectors corre-
sponding to its type. An FS-indicator space-location characteristic (for example, 
metric) is introduced and is formulated based on its algorithm, which deter-
mines FS classification by correlating measured FS indicators, represented by 
the corresponding n-dimensional vector, with one or another space area. Such a 
model of integral FS evaluation opens the following possibilities for solving FS 
monitoring problems:

(1) Spatial areas can be determined for each person separately according to 
individual characteristics; this procedure eliminates the problem of indi-
vidual differences. 

(2) FS localization in separate spatial areas allows determination of the cen-
troid for each FS type; the centroid reflects both the indicator values typical 
for the given FS type and the oscillation limits beyond which a transition to 
another FS type occurs. 

(3) The trajectory of vector displacement in an FS indicator’s space allows es-
timation of the sustainability level of the FS type and forecasts of the direc-
tion and the probability of change of the FS type. 

(4) Multivariate analysis (multidimensional scaling, factor analysis) can pro-
vide a reasonable reduction in the number of registered signals and FS in-
dicators without reducing the reliability of the determination of FS type. 

(5) The accumulation of training samples refines the true partitioning of an FS 
indicator’s space to areas corresponding to given FS types; this procedure 
results in the increased accuracy of the determination of FS type. 

(6) The geometric model of FS space allows the visualization of results in the 
context of psychological and psychophysiological training, which can be 
used in developing skills for FS self-regulation.

The high efficiency of the vector approach was successfully demonstrated in 
the field of sensory and cognitive psychophysiology (Sokolov, 2013), as well as in 
human FS diagnostics (Lebedev et al., 2013).

Algorithms that provide a partition of an FS indicator’s space into areas cor-
responding to different FS types may be based on various methods of machine 
learning: for example, clustering methods, neural networks, the method of support 
vectors, decision (random) trees, random forests. We have developed a special-
ized method for the automated construction of classifier functions for binary FS 
classification; it provides reliable classification of stress vs. state-of-calm wakeful-
ness (also referred to as a normal FS) despite the relatively small size of learning 
samples (Galatenko, Livshitz, Podolskii, Chernorizov, & Zinchenko, 2012). Along 
with an efficient procedure for dimension reduction that utilizes discrete wavelet 
transform, this method includes an individual tuning stage that allows the inclu-
sion of certain information on individual peculiarities in the classification. This 
stage additionally requires only a short learning sample for an individual, which 
significantly increases the reliability of the FS classification (Galatenko et al., 2013). 
The significance of an individual tuning stage has also been observed for a com-
pletely different method of FS classification based on the integrated analysis of pe-
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ripheral physiological parameters (Lobacheva et al., 2013). These results provide a 
basis for the conclusion that using an individual tuning stage, which is not standard 
for classical machine-learning methods, is natural and efficient when mathematical 
methods for FS classification are employed.

conclusion
In full accordance with the ideas of L.S. Vygotsky, the main trends in the devel-
opment of modern approaches to FS diagnostics concentrate on the integration 
of psychology and natural science (neuroscience, mathematics). These trends are 
connected with the construction of complex psychophysiological expert systems 
for FS diagnostics based on multidimensional analysis in real time of both psycho-
logical and physiological data. From our point of view, the vector metric model 
for the representation of FS parameters, combined with methods of multivariate 
analysis, is the most promising tool for building an integral process for the evalua-
tion and classification of FS. 
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